A Staircase Illumination Theorem for Orthogonal Polygons

نویسنده

  • Marilyn Breen
چکیده

Let S be a simply connected orthogonal polygon in the plane, and let T be a horizontal (or vertical) segment such that T ′ ∩ S is connected for every translate T ′ of T . If every two points of S see via staircase paths a common translate of T , then there is a translate of T seen via staircase paths by every point of S. That is, some translate of T is a staircase illuminator for S. Clearly the number two is best possible. The result fails without the requirement that each set T ′ ∩ S be connected. MSC 2000: 52A30, 52 A35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Guarding Orthogonal Polygons with Bounded Treewidth

There exist many variants of guarding an orthogonal polygon in an orthogonal fashion: sometimes a guard can see an entire rectangle, or along a staircase, or along a orthogonal path with at most k bends. In this paper, we study all these guarding models in the special case of orthogonal polygons that have bounded treewidth in some sense. Exploiting algorithms for graphs of bounded treewidth, we...

متن کامل

A chromatic art gallery problem

The art gallery problem asks for the smallest number of guards required to see every point of the interior of a polygon P . We introduce and study a similar problem called the chromatic art gallery problem. Suppose that two members of a finite point guard set S ⊂ P must be given different colors if their visible regions overlap. What is the minimum number of colors required to color any guard s...

متن کامل

A Fast Algorithm for Covering Rectangular Orthogonal Polygons with a Minimum Number of r-Stars

Introduction This paper presents an algorithm for covering orthogonal polygons with minimal number of guards. This idea examines the minimum number of guards for orthogonal simple polygons (without holes) for all scenarios and can also find a rectangular area for each guards. We consider the problem of covering orthogonal polygons with a minimum number of r-stars. In each orthogonal polygon P,...

متن کامل

Directly Visible Pairs and Illumination by Reflections in Orthogonal Polygons

We consider direct visibility in simple orthogonal polygons and derive tight lower and upper bounds on the number of strictly internal and external visibility edges. We also show a lower bound of ⌈n2 ⌉ − 1 on the number of diffuse reflections required for completely illuminating an orthogonal polygon from an arbitrary point inside it. Further, we derive lower bounds on the combinatorial complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007